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Abstract—A unit cell problem governing effective mechanical properties and local stress con-
centrations for composites with periodic micro-structure and nonlinear constituents has been derived
by employing an asymptotic expansion of the field variables in two length-scales. The influence of
cell type upon effective properties has been investigated for a continuous fiber reinforced composite.
It was found that the effective transverse properties are strongly dependent on the unit cell type
when the matrix exhibits a nonlinear response. Finally the anisotropic behavior of the hexagonal
unit cell and its applicability to determine eflective properties and initial yield surface for transversely
isotropic composites has been investigated.

1. INTRODUCTION

A common problem in the mechanics of composites is to determine cffective propertics for
a composite from the distribution and properties of the constituents. This may be necessary
because suflicient data are not available for a system. Traditionally, only the inplanc
propertics have been reported for laminates. Many new composites are only available in
limited quantitics and this restricts the properties that can be determined experimentally.
However, the recent consideration of composites in new demanding applications with new
design problems requires more information in order to determine stress concentrations,
interlaminar stresses and edge effects. Furthermore, the properties of a hypothetical com-
posite which has not been manufactured could be required in order to make early design
decisions or to tailor a composite for specific application. Sometimes all the properties of
the constituents are known and the effective properties can be calculated directly. Quite
often some of the properties of the constituents are unknown, or the properties of the
constituents in the composite differ from their bulk properties, and have to be determined
from the propertics of the composite by back-calculations.

Effective properties for linear elastic composites have been addressed extensively and
access to the literature is provided in Jones (1974), Christensen (1979) and Hashin (1983).
One group of the methods uses the solution for the stress and strain fields for a single
reinforcement embedded in an infinite body and the influence of the different reinforcements
are accounted for by superposition. Average stresses and strains can be readily calculated
and the effective material constants can be determined. In the dilute scheme, the reinforce-
ments are assumed to be in an infinite body with the properties of the matrix and so far
apart that they do not interact. Closed form solutions can usually be obtained but their
validity is restricted to low volume fractions of reinforcements. This restriction is eased
somewhat in the self-consistent scheme where the reinforcements are assumed to be em-
bedded in an infinite body with the properties of the composite. [terative numerical proce-
dures are often required to calculate the effective properties. The results are valid for higher
volume fractions than the results for the dilute scheme. In the differential schemes the dilute
solution for a small perturbation of reinforcements in an infinite body is used. It is expected
that this solution is very accurate. The governing equations for the effective properties are
then integrated from zero volume fraction of reinforcement up to the actual volume fraction
by letting the properties of the surrounding body change gradually from matrix to
composite. Numerical integration is often needed. The results are close to self-consistent
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results but usually predict a somewhat more compliant composite. Energy methods can
also be employed to form upper and lower bounds for the etfective properties. The bounds
are usually too far apart to be really useful for predicting effective properties with the
accuracy that s needed for structural calculations. Simple geometrical models, like the
cvlinder model for continuous fiber reinforced composites. have the advantage of permitting
closed form solutions and sometimes give excellent results.

The methods mentioned above do not account for the local interaction between
neighboring reinforcements and could not be expected to give accurate results for high
volume fractions of reinforcement. This case s usually analysed by assuming that the
composite material has a periodic microstructure and a small unit cell can be identified.
The analysis often requires numerical methods. In a real material the reinforcements are
usually randomly distributed in some planes and the concern is how well the artificially
periodic material resembles the real material. Experience of the linear elastic properties of
fiber reinforced systems (Adams and Tsai. 1969), indicates that the choice of unit cell is not
critical and does not affect the effective properties noticeably. The same experience is not
available for composites with nonlinear constituents even if some limited results exist
(Adams, 1970).

The method of homogenization is used here to derive a solution to the problem of the
unit cell that govern effective properties and local stress and strain concentrations for
composites with nonlinear constituents. The method is a two-space method that was used
by Larson (1976) to study ncutron transportation in inhomogeneous media and has been
discussed by Keller (1976). Len’e and Leguillon (1982) and Len’e (1986) used it to calcutate
clfective propertics for composites with hinear elastic constituents. The complexity of repre-
senting the state of the composite with a limited number of global state variables has been
addressed in conjunction with the method by Suquet (1983, 1985). First the theory of
homogenization is used to show that the leading order problem for the cffective propertics
is a standard boundary value problem defined on the unit cell with periodical boundary
conditions. The solution procedure required for the effective propertics has been
implemented in a finite clement program. Finally, it is studied how the unit cell type and
loading directions affect effective propertics and stress concentrations for a unidirectional
continuous fiber-reinforced metal matrix composite.

2. HOMOGENIZATION

2.1, Statement of the problent
Consider a pertodic nonlincar elastic inhomogencous body, Fig. 1, which comprises at
feast two constituents. The body hus two length scales, a global length scale, D, that is of
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Fig. 1. Periodic body and representative unit cell.
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the order of the size of the body, and a local length scale, d. that is proportional to the
wavelength of the variation of the micro-structure. The micro-structure is periodic and it
is sufficient to specify the distribution of the constituents on the smallest repeatable element,
the unit cell. The size of the unit cells is further assumed to be much smaller than the size
of the body so that,

5=%« 1. (N

The relation between the global coordinate system ., for the body and the local y, for
the unit cell can then be written as

.)’i_(j

where ¢ is the scaling between the two length scales. A movement of order unity on the
local scale corresponds to a very small movement on the global scale.

The coefficients C, (¢, ) in the nonlinear constitutive equations (3b) are assumed to
have the usual symmetry properties and are functions of the position y, and the invariant
of the strain tensor ¢,. The spatial dependence of the coefficients in the unit cell is given
through the distribution of the constituents. Furthermorc, the wavelengths of the prescribed
traction T;, displacements &, and body forces f; will be restricted to being much longer than
the wavelength of the micro-structure in order to allow for a homogenized solution, e.g. no
point loads are allowed. This defines the boundary value problem (3) for the composite
structure from which the unknown ficld quantitics, stress a,,, strain ¢,; and displacements
u, can be solved for:

X

au./ +j.; = 0 in V' 61/ = Cl‘/k/ (;)n l:)[:kh Ly = %(uk.l + ul.k) (3‘l-c)

am=7T, on S, =4, on S, (3d.e)
This boundary value problem has the feature that Cyy, (e, x/J) varies very rapidly with
a short wavelength on the global length scale x; and it is hard to find a solution that solves

the global problem and accounts for the local oscillation at the same time. Hence, there is
a motivation to look for a simplified solution.

2.2, Asymptotic expansion

Assume a solution of the field variables could be found that is a function of the two
space variables x; and y, and depends regularly upon §. Hence, it is natural to look for an
asymptotic expansion of the displacement field in the form

u,(x, y, 8) = ul(x, y)+0u'(x, ) + 0%l (x, y)+- - (4a)

where u(x, y) is a slowly varying function in x; due to the restriction of the loading and a
periodic function in y, governed by the periodicity of the micro-structure,

ui(x, y) = ui(x, y+d). (4b)
The boundary conditions can be expanded in a similar way

17,' (-‘:v yv 5) = al'o(x) ,V) +6ﬁil (X, }') +52Ei2(x9 }') + (Sa)
Ti(x, y,0) = TP (x, )+ 6T/ (x, ) + 8T (x, )+ (5b)
j;(xv Vs 0) = ]Ip(x’ }’)‘HV:' (x.») +62f,-2(.\', .V) + (5¢)



2184 S. Jansson

Use of the definition for strain (3c) together with differentiation with respect to the
two length scales on (4a) gives

1 .
811' = %(ui.x/ + u;._\',) + :;3 (ul,l'( + u/,‘v,) = % [(ug\', + u)(?_r,) + ()(ll,{\./ + u/‘,,r,)
3¢y, 2 I 0 0 | 1 T 2 - 6
+ 0 (ux"r, + u/,,\r,) + 4+ 5 (ul.}'/ + uj._l‘,) + (“:. v, + U,‘_ s',) + ()(“t. ¥, + ll[‘ v,) + . ( )

The stress can now be derived from the constitutive equation (3b) by using the expression
for the strain (6} as

oy =0, +0,+0;+ (7a)

where the different orders of the stress are

|
0y = Cou (1 &) 55l +1ay). 0y = Cun (o) Hanle + )+l +uy,) - (Tbo)
0} = Cou (3. )0 Mul, +u) +ul, +ul,) (7d)
0Ca(y.e) @

0 i { i 1 i 2 2
+ A‘_a; - 4 (“'. X + “!.X, + “t‘ ¥y + ";.y,)(“r.x, + u.v,.\, + “r,y' + “x, r,}* (70)
sy

Differcntiation of the cquilibrium equation (3a) with respect to the two length scales gives
1 .
ol]‘\‘,+ 6”‘/.;‘, +/l = 0 (8)

Inserting the expression for the stress (7) in the equilibrium equation (8) and identifying
the terms of different order in d gives

] 1 . .
o) =0 0(52) 6, +0). =0 0(5)' o,;_},,é—rf,',‘x’ +f£,=0 0() (Ya-)

and cquations of higher order in 8. There are no boundary conditions associated with eqn
{9a). It can be satisfied by letting the leading order term of the displacement

w’ = ul(x).

It is also required in order to avoid singularities in the steain, eqn (6). In (7b) this implies
that

g, =
and eqn (9b) simplifies to
o, = [Cule"+5M],, =0 (10
where the first term of the strain
ED(x) = 1[ude () + 1l ()] (1)

is constant over the unit cell and the second term
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&, (. ») = i, (. ) +u, (x, )] (12)

is a periodic function on the unit cell.

The equilibrium equation (10) together with the definitions of strain (11) and (12) and
the periodicity requirement of the displacement field (4b) form a well-posed boundary value
problem on the unit cell for the displacement field « when the displacement field is fixed
at some location in the unit cell and &) is given. The solution to the problem can be written
formally as

“il = Bik,(_‘*.so)sf,. 5.",' = A.jk/(y-so)f?l?/ (13,14)
al} = [Ci/kl + CiququkI]EI?I (15)

and the average strain in the unit cell can be calculated as
l 0 1 0 1 1 | I 0
(g = ¥ y(s,,-+s,,)dY= &+ % ] Wwin+uin)dll = g, (16)

The first term & is constant. The divergence theorem together with the definition of
strain have been uscd on the second term ¢&. The resulting surface integral is zero because
the displacement field u' is periodic and equal on the opposite sides of the unit cell while
the normal n; has oppositc directions. The average stress in the unit cell could formally be
calculated and expressed as a function of the average strain as

(a}y = [{Cor) +{Ciipg Appr DNt = Qs (")t an

Taking the average over the unit cell of the cquilibrium equation of order unity (9¢)
yiclds

(ol >+<a,. >+<{f>=0.

Use of the divergence theorem on the first term gives

) l )
(a,;'},‘) = ?J; oyndlC =0 (18)

because the periodicity of the displacement field causes ¢ to be periodic and contributions
form opposite sides on the boundary of the unit cell canceling each other out. The leading
order terms of the series expansions of the boundary conditions (5a,b) and the volume
force (5¢) can only be functions of the global length scale due to the restriction made on
the displacement ficld (4a). The leading order terms are then equal to the average of the
field variables over the unit cell. The global boundary value problem for averages of the
field variables on the unit cell then reads

0,0, Hf2() =0 in V, &)= iul,+ulL) (18a,b)

uw =4ax) on S, {aldn,=T)x) on &, (18c,d)

where the effective constitutive equation (17) is given by the solution of the problem defined
on the unit cell. It can be seen from the asymptotic expansion (4a) that the solution of the
displacement field goes to the correct one when & — 0, the size of the unit cell goes to zero
in relation to the size of the body. However the errors in local variation of stress and strain
on the unit cell depend on the stress concentrations and are in general not bounded while
the average values tend to the correct solution. The accuracy of the solution can be improved
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by including higher order terms when the variation in the boundary conditions is strong
over a unit cell length. However, this is hardly a practical procedure for the nonlinear case.

2.3. Numerical implemen:tation

The remaining part of the report focuses on calculations of effective properties and
local stress concentrations. The unknown displacement u,. which is periodic on the unit
cell (4b). is determined by solving the equilibrium equation (10) for a given strain &)}, which
is constant over the unit cell. The local stress concentration is given by (15) and the average
stress is calculated by integrating (15) over the unit cell and the effective stress strain relation
for the composite is given by (17).

The numerical solution of the unit cell problem requires a variational formulation of
the equilibrium equation (10). Multiplying (10) with the variation of the displacement field
du/!. integration over the unit cell and use of the divergence theorem gives

~

jr o) ,0u dY = J; oin;oul dT — L g,0u,dY =0 19
where the term
f a)duln, dl = 0.

-

Hence, the last of eqn (19) together with definition of stress (7¢) and strain (11) and (12)
give the final form

4[ Cor(B)ey e, dY = -—J Cilp)elde, dY. (20)
v ¥

This formulation has been implemented in a finite element program for a two dimensional
distribution of reinforcements.

The constituent’s behavior has been described by a J, deformation theory, of.
Hutchinson and Neal (1981). The total strain &) is given as the sum of the elastic com-
ponent

f+v v

&, = SO Esk&é,g (21)
and a nonlinear plastic component
3IfE 1
1;3 = Z(E: — E‘)Sq (2lb)

where E is Young's modulus, v the Poisson’s ratio and s,; the stress deviator. The secant
modulus is given as E, = g /¢, where o, is the von Miscs equivalent stress and ¢ is the
associated equivalent strain. The stress—strain relation reduces to

i g <a,

£ =
oo foY S
—f — g20
E \o, °

in uniaxial tension, where g, is the yield stress.
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The displacement field is interpolated with nine node isoparametric elements. Selective
reduced integration is used to avoid locking, 2 x 2 is used for the hydrostatic component
and 3 x 3 is used for the deviatoric component of the stress field. The nonlinear system of
equations is solved with a Newton-Raphson scheme extended with line search (Jansson,
1986). The program can handle periodic boundary conditions as well as different symmetry
conditions. An outer Newton-Raphson loop solves for ¢3; when a condition on the average
stress in the 3-direction is imposed. The averages of stresses and strains are calculated by
numerical integration at the Gauss points.

The described implementation requires access to the source code of a finite element
program. This is not always available. The given strain &) in (20) can be converted to an
equivalent condition for the displacements on the boundary by using the complementary
virtual work theorem. The requirement of periodicity of the displacement field on the
boundary is replaced with

u(x.y+d) = e)d +u,(x, »). (23)

The average stress can also be evaluated from the nodal reactions by use of the divergence
theorem as

f wa,,dY = J yo,n, dF—J Y;0,dY = J noun, dr—-J o, dY.
Y r Y r Y

For the unit cell problem a,,, = 0 and

J o,dY = J‘ ¥, 05t 4T (24)
v r

that is the mean stress theorem for the case of no body forces.

3. CASE STUDY

3.1. Modeling

The modeling of a high volume fraction fiber reinforced metal matrix composite is
achieved by using the described procedure. The composite consists of a ductile aluminum
alloy matrix reinforeed with long stiff alumina fibers in an unidirectional lay-up. The
bond between fiber and matrix is very strong. The basic properties of the composite and
consistuents are given in Table 1. Detailed information and experimental procedures are
reported in Junsson (1990). The fibers are nearly parallel in the longitudinal direction and
randomly distributed in the transverse plane. This is very close to the assumption that the
composite consists of fibers that are long parallel cylinders randomly distributed in the

Table 1. Comparison between experimentally measured elastic constants, caleulated
for different array types, and predictions by a commonly used method

E E,, Gi: G
GPa GPu GPa GPa vy, vy v,
Experiment 150 225 55 58 0.31 028 0.18
Homogenization :
square array 159 220 493 579 0.283 0.284 0.205
hexagonal array 148 220 549 573 0.336 028 0.189
Engincering rules 160t 220t 58§ 57t 047§ 0.29¢ 0.21%%
E =34.5GPa ve=0.26
E. = 68.9 GPa Ve = 0.32
Cm = 55%
t Halpin-Tsai.

1 Rule of mixture.
§Cylinder model.
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Fig. 2. Arrays with the representative unit cell indicated @ (a) Square array. (b) Hexagonal array.

transverse plane. The problem is then reduced from three to two dimensions. The repeating
element in the transverse plane is of a similar size to the composite, including many fibers,
and is too complex for repeated numerical analysis, especially when the constituents have
a nonlincar stress strain relation. Hence, the random distribution of fibers has to be
approximated with a periodic distribution in order to reduce the size of the problem. It is
not clear how well different periodic distributions model random distributions. Two different
array types, a square Fig. 2a and a hexagonal array Fig. 2b, have been investigated. The
choices of unit cells are also shown. It is not unique but the most convenient for the present
calculations.

The loadings considered coincide with the principal directions of the material and only
a quarter of the unit cell for the square array needs to be analysed because of symmetries.
The hexagonal unit cell has an additional inversion symmetry around the point
(= \/3/2 h.y. = 1/2 b) that makes it possible to reduce the problem to an eighth of its
original size. The boundary conditions are derived in Appendix A.

3.2. Linear elastic behavior
The calculated effective properties for the two array types are given in Table | together
with experimental data for the composite in question. The results are also compared with
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Fig. 3. Finite clement mesh used for the analysis of the hexagonal array.

results of rules that are frequently used in engineering to estimate effective properties. ¢f.
Jones (1974) and Christensen (1979). The longitudinal modulus E,; and the inplane Pois-
son's ratio v,, are insensitive to the array types and are also given accurately by the rule of
mixtures. The reason for this is that the mismatch in Poisson’s ratio between fiber and
matrix causes perturbation in the strain ficld that is of second order compared to the
nominal strains and docs not change the stored energy substantially. The inplane shear
modulus G, is also insensitive to the array types and is given closely by the Halpin-Tsai
equation. The transverse modulus £, the transverse shear modulus G5, and the Poisson's
ratio v, are morc sensitive to array type. The hexagonal array gives the best overall
prediction of the transverse propertics. The Halpin -Tsai equation gives a transverse modu-
fus close to the prediction of the square array because it is semi-empirical and has been
fitted to the results of a square array. The prediction of v, s from the engincering rules shows
that scrious errors can occur i methods, based on different assumptions, arc combined to
calculate an clastic constant. It can be concluded that the use of the hexagonal unit cell
provides a consistent method to calculate all the effective propertics. Only five eight node
isoparametric clements are needed in order to calculate the elastic constants with 1%
accuracy. Hence, the computer-power needed is minimal and this scheme has been
implemented successfully on a personal computer (Burns, 1989), The problem governing
the linear elastic properties can also be solved efficiently by use of Fourier series (Chen and
Cheng, 1967). The experiments and calculations indicate that the transverse shear modulus
G, is approximately equal to the inplane shear modulus G ;. This and the fact that the
elements Cy 4, = Cyy3;y 10 the stiffness tensor were assumed by Christensen (1987) in order
to simplify the transformations of the stiffness tensor. The number of independent constants
are then reduced from five to three. Calculations show that the two assumptions are accurate
within 10% for a wide range of volume fractions and modulus combinations when the
fibers are isotropic.

3.3. Nonlincar behavior

The deformation characteristics have been studied for a hardening exponent 2 = 5 in
the constitutive equation (23). which is a realistic value for a ductile metal matrix. A typical
mesh is shown in Fig. 3. The nonlincar longitudinal propertics were found to be insensitive
to array type while the transverse properties and inplane shear responses were found to be
sensitive to array type. Transversc stress strain curves for the different array types are shown
in Fig. 4. As noted earlier, the linear elastic response is not greatly affected by the array
type. The nonlinear response is substantially affected and the limit load for the square array
is approximately twice as high as that of the hexagonal array for the present loading
directions. It can also be scen from the graph that an assumption of plane strain in the fiber
direction instead of generalized plane strain only affects the initial linear elastic response.

SAS 29:17-F
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The transverse stress—strain curve could be estimated from the plane strain curve by
adjusting the linear elastic strain component.

Since the predictions of the square and hexagonal arrays differ substantially, it is then
a concern if any of the array types have the features which resemble the behavior of a real
composite with randomly distributed fibers. Some insight into this is provided by the form
of the invariants of the stress tensor for the different systems. The stress invariants reflect
the symmetries of the mechanical properties. They are given in Appendix B for the two
array types together with those for a transversely isotropic material that has the symmetry
properties of a composite with randomly distributed fibers. The invariants of the hexagonal
array and the transversely isotropic material agree up to second order. This implies that
the linear elastic constants have the same symmetry properties because the energy function
is quadratic in the stress components. The invariants of the square array agree only to first
order with the invariants for the transversely isotropic material. This indicates that the
square array could not be expected to resemble the behavior of a transversely isotropic
material even for the linear elastic response.

The hexagonal array will be studied further because it has the symmetry properties
closest to a transversely isotropic matertal. It will be found that the difference in high order
terms of the hexagonal array and the transversely isotropic material is reflected by a
directional dependence of the nonlinear response for transverse loadings and inplane shear.

The calculated longitudinal stress-strain curve for the hexagonal array is shown in
Fig. 5. The deformation of the composite is dominated by the stifl fibers and the nonlinear
contribution from the matrix enters as a small perturbation and the composite response
appears to be bilincar. The plastic deformation of the matrix introduces a larger mismatch
in Potsson’s ratio between fiber and matrix than for the lincar elastic response. The inter-
action in the transverse plane is st small and an identical stress -strain curve could be
cileulated by assuming a parallel system of fiber and matrix. The initial yicld stress is also
given closely by the parallel system.

The transverse stress strain curves are shown in Fig, 6 for different loading directions.,
The inttial yicld stress and the nonlincar portion of the curves, especially the transition from
lincar to fully plastic behavior, are weakly dependent on the loading direction and the
composite has a somewhat higher limit stress for o, loading. The transverse load carrying
capacity s governed by the matrix flow stress strengthened by the plane strain condition in
the 3-direction, induced by the continuous fibers, and by the constraint that the fibers induce
on the inplane deformation.

Fiber Square Array

Hexagonal Arroy

0/0ym
LS

L0 ILJ00 00 J A A A A B S 0 A B M i ot B S 24 0 A

0.0 0.2 0. 0.8 1.0

4 0.6
e (%)
Fig. 4. Transverse siress strain curves for loading in the v, direction. The square array has been

analysed for generalized plane strain and the hexagonal array has been analysed for generalized
plane strain.
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Fig. 5. Longitudinal stress-strain curve. Dashed line indicates initial elastic response.

The calculated shear stress strain curves are shown in Fig. 7. The loading t,, is the
only transverse shear stress that induces a pure shear strain response in the transverse plane
because the principal stresses are oriented in directions with identical micro-structure.
Loading in all other directions induces a combination of shear and normal strain and does
not decouple transverse tension and shear in the way expected for a transversely isotropic
material. The nonlincar inplanc shear response, t,, and 1,4, is dependent on the loading
direction and the difference is more pronounced than for transverse tension, Fig. 6, and the
limit stress for t,; loading is noticcably lower than for 1., loading. It can be seen in Fig.
2b that t;, load planes parallel to the loading plane permit slip unconstrained by the fibers.
This implics that the limit stress for a perfectly-plastic matrix is the same as the matrix yicld
stress in shear. In a large volume clement of a composite with randomly distributed fibers,
planes cut through fibers and the area fraction of fibers on the planes are equal to the
volume fraction. The deformation for t,; is constrained because no unconstrained planes
exist in the 1-3 directions for the present volume fraction. Lower volume fractions will
permit unconstrained slip for both loadings. Hence, the t,; curve must be closer to the
response of a composite with randomly distributed fibers than the t,, curve. [t should also
be noted, Fig. 7, that the transverse shear stress-strain curve 1, is remarkably similar to

25

2.0

Matrix

0.5

0.0

0.0 0.2 0.4 0.8 1.0

. (%o).s

Fig. 6. Transverse stress-strain curves for loading in the y, and v, directions of the hexagonal array.
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Fig. 7. Shear stress-strain curves for transverse shear 0, and inplane shear ¢, and a,,.
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the inplane shear stress-strain curve 1, and the responses can be assumed to be identical.
This will provide a simplification of the macroscopic constitutive equations describing the
composite behavior. However, this assumption remains to be verified experimentally.

3.4, Hydrostatic tension

The plastic deformation of metals is commonly accepted to be incompressible and this
is used in the formulation of constitutive equations for continuous fiber reinforced metal
matrix composites. The calculated response for hydrostatic loading, Fig. 8, shows that the
plastic deformation occurs with an increase in volume. Furthermore, it is also quite unlikely
that the average deformation of a body consisting of an elasto-plastic phase and a lincar
clastic phase would be incompressible. The nonlincarity for the hydrostatic loading is of the
same magnitude as for longitudinal tension, Fig. 5. This indicates that if incompressibility is
assumed in the formulation of the constitutive equations then inextensibility of the plastic
deformation in the fiber direction must also be assumed in order to be consistent.

10
s Ess €a/3 Ety, €22
E ’ / /
F v/ 7
/
BE / 1/ 7
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o / 2/ 7
L / 7/ 7
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g 6F / s
> g / w7’
{ F ’ //’
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o 4f 4 /
2
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0.0 0.1 0.2 0.3 Q.4
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Fig. 8. Stress-strain curves for hydrostatic loading. Dashed lines indicate initial clastic responses.
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Fig. 9. Normalized contributions of stress and strain from the matrix phase for longitudinal tension.

3.5. Averages of stress and strain

The contributions from the matrix phase to the average stress and strain are shown in
Fig. 9 for longitudinal tension. The sums of the ratios for fiber and matrix are equal to one.
The calculations show that the strain ratio remains constant during the loading and is equal
to the volume fraction. This indicates a nearly constant longitudinal strain component in
the composite while the stress ratio decreases after matrix yield. Loadings that do not
directly stress the fibers in the longitudinal direction exhibit the same features as those
shown in Fig. 10 for inplanc shear. The ratio between average stress in matrix and fiber
remains approximately constant during the deformation while the matrix strain ratio
increases after matrix yicld. The ratio of the average stress in the matrix is lower than the
matrix volume fraction. It is cqual to the matrix volume fraction when a constant stress
ficld is assumed. This assumption is frequently used in lower bound calculations. In some
models it is assumed that the strain is constant in the fiber direction and the ratios between
phase averages of the stresses in the other directions remain constant during the defor-
mation. The ratios are given by the lincar elastic solution and the constitutive equation for
cach phase is used to relate the phase averages of stress and strain. Predicted stress—strain
curves for the two assumptions are shown in Fig. 11 for inplane shear. Use of the constant
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Fig. 10. Normalized contributions of stress and strain from the matrix phase for inplane shear.
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ratio between stress phase averages substantially underestimate the plastic deformation in
the matrix. The nonlinearity in the constitutive equation causes the actual non-uniform
stress distribution in the matrix to give a much higher strain contribution than the average
stress. The assumption of a constant stress overestimates the matrix stress and overpredicts
the strain.

3.6. Plastic zones

The evolution of the plastic zone in the matrix is dependent on the loading direction
and is shown for transverse tension in the l-direction tn Fig. 12 and for tension in the 2-
direction in Fig. 13. For ¢, loading, yielding starts at the fiber matrix interface at an angle
of 60" from the tensile loading direction. Increased loading develops a contained region of
yielded matrix that extends in the loading direction between the fibers. Further loading
causes a growth of the plastic zone such that it extends from one side of the unit cell to the
other side perpendicular to the tensile direction and this coincides with noticeable plastic
deformation of the composite. Some symmetry locations do not yield for a limited global
strain. For o, loading, Fig. 13, initial yielding occurs simultaneously at two locations: at
the interface at an angle of 307 to the tensile direction and in the middie of the matrix
between the poles of the fibers. It can be concluded that the initial details of the development
of the plastic zone are dependent on the loading direction but the subsequent trend is
similar.

3.7, Initial yield surface

The initial yield surface for the composite has been determined by superimposing the
lincar elastic stress distributions for the different load cases and caleulating the von Mises
cquivalent stress.

Calculated imitial yicld surfaces for inplane sheuar are shown tn Fig. 14 for difterent
oricntations of the unit cell. Initial yield always occurs at the interface for this loading. For
the stresses oy and gy, orientated in the principal directions of the material, v = 0 in Fig.
2b. the yield surface has the shape of a hexagon. This shape was also found by Dvorak et
al. (1974). The real composite is transversely isotropic and its yield surface has the form of
a circle in this plane (this can be determined from the form of the invariants in Appendix
B). One way to use the results from the hexagonal array is to assume that the unit call can
be oriented in any direction in relation to the global stress state. The initial yield surface is
then dictated by the unit cell orientated with the highest stress concentration so that the
yield surface is minimized giving the inscribed circle in Fig. 14, This approach requires that
the stress concentrations must be evaluated for many load combinations to determine the
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Fig. 1. Estimated inplanc shear stress-strain curves for the assumptions : constant stress ficld, the
ratio between the phase averages of stress is given by the lincar elastic stress distribution,
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<gq1> = 0.06% <ey1> = 0.08%

<eq1> = 0.09% <eq1> = 0.15%

Fig. 12. Development of plastic zone in matrix for transverse tension in the F-direction.

yield surface for the general stress state. A less time consuming and more pleasing method
is to assume that the principal stresses in the transverse plane and &, and g3 are orientated
at an angle of 15" to the symmetry lines of the hexagonal array, corresponding to the [ and
II'in Fig. 2b with v = 15°. The advantage is that the two orthogonal loading directions |
and I are identical with the same micro-structure and the hexagonal cell has the desired
symmetry properties of a transversely isotropic material for this loading,

Initial yield surfaces for transverse loading arc shown in Fig. 15. The surface for
loadings in the | and 2 directions, v =0, do not have the symmetry properties of a
transversely isotropic material. The yield surface is smaller in the g, direction than in the
g, dircction. The location of maximum equivalent stress in the matrix was found to be
either at the interface or in the middle between two fibers depending on the loading. The
shape of the yield surface corresponding to a unit cell orientated in the direction giving the
highest stress concentration and the one corresponding to the principal stresses in the 15°
directions are also shown. They do not differ greatly in shape but the latter is far easier to
determine. The maximum effective stress was always located on the interface for the surface
v = 15". The shape of the initial yield surface, v = 15°, in ay,, 0}, and &, space is given in
Fig. 16. The surface is thin in the direction oy, = —a),;, corresponding to transverse shear,
and is long in the direction 6, = 6, with a sharp corner. Longitudinal and transverse
biaxial loading with stress components of equal sign load the fiber in the longitudinal
direction and this causes a high yield stress. Transverse tension and transverse and inplane
shear do not load the fiber strongly in the longitudinal direction and the initial yield stress
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Fig. 13. Development of plastic zone in nutrix for transverse tension in the 2-direction,
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Fig. 14, Initial yield surface for inplane shear loading.
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Fig. 1S. Initial yield surface for transverse loading.

is fower than for the matrix due to the stress concentrations induced by the fiber. The plastic
zones at the initial plastic deformation are contained, Figs 12 and 13, and the initial yielding
causes very small average plastic strains for the composite.

4. CONCLUSIONS

The effective properties for a composite with a periodic micro-structure consisting of
nonlincar constituents is governed by a unit cell problem when the length scale of the micro-
structure is short in comparison to the wavelength of the loading.

The nonlincar transverse and inplane shear strain responses for fiber reinforced com-
posites are strongly affected by the arrangement of the fibers in the transverse plane while
the linear clastic constants are less dependent on the arrangements. This implics that care
must be exercised when periodic arrays arc used to model the behavior composites with
randomly distributed reinforcements. This is especially true when the matrix has a high
hardening exponent.

os3/0 ym

Fig. I§. Initial yield surface for combined transverse and longitudinal loading. It is calculated by
assuming that the principal stresses in the transverse plane arc orientated at an angle of 15” to the
symmetry planes.
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The hexagonal array is frequently used to model the behavior of transversely isotropic
materials because its linear elastic response is transversely isotropic. It was demonstrated
that the responses of the array to loadings that are not axisymmetric with respect to the
fibers is not transversely isotropic. This was most noticeable tor inplane shear. In order to
get reasonable results loading directions must be evaluated which avoid slip unconstrained
by the fibers.

The initial yield surface of the hexagonal array is not transversely isotropic. A trans-
versely isotropic yield surface can be determined efficiently from the hexagonal array by
assuming that the principal stresses are orientated 15° to the principal directions of the
material, Fig. 2b. This concept can also be used in models when hexagonal grains are used
to model creep by grain boundary sliding and diffusion in order to get an isotropic behavior.

The calculations showed that the longitudinal strain is approximately constant in the
composite and that the phase averages of transverse stresses and inplane shear stresses
remain constant during the loading.
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and by a grant from NASA Lewis Research Center.
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APPENDIX A

The considered toadings coincide with the principai directions of the material. The periodic displacement
ficld is taken Lo be zero at the center of the unit cell for the square array. This implics that the symmetric unit cell
is subjected to symmetric or antisymmetric loading und only a quarter of the unit cell has to be analysed.

Longitudinal loading, {(g,,> # 0. is imposcd by specifying the strain £%,. The resulting displacement s
symmetric with respect to the y, and y; axes and the normal components of the field have to be zero along these
axes, giving

u(y, =0)=u(p,=0)=0
The symmetry of the loading together with the periodicity of the displacement field require v (y, = b) = 0 and

u:(y; = b) = 0. However, the conditions of {(¢,,> = 0 and {0.,;> = 0 arc automatically satisfied by the solution
procedure by letting these boundaries displace with constant normal displacement such that
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u,(y, = b) = constant so T,dr=90

V=g

u,(y. = b) = constant so f T.d =0

where T is the traction on the boundary I” of the unit cell. The average strains &}, and 2, are then such that
{g,) = (02> =0.cf eqn (25).
Transverse loading. (o) # 0, is imposed by specitying &7,. The symmetry of the loading together with the
periodicity of the displacement field require
(¥ =0 =u(y2=0=u(y =5=0

The condition of {g,)> = 0is accomplished by letting the normal displacement of the boundary y, = a be constant
such that

u,(y; = b) = constant  so J T,dlr =0
and the longitudinal strain is given by the condition
£%; = constant  so j T,dl =0.
vy=0

Transverse shear, {a,,) # 0, is antisymmetric with respect to the », and »; axes, requiring

u(y2 =0) =ux(y, =0)=0.

The antisymmetry of the loading together with the periodicity of the displacement field require

lh(_V: = h) = u:(y' - b) =0,

For inplane shear, (a,,) # 0. is the out of plane displucement #, the only non-vanishing component. The
loading is symmetric with respect to the p, axis and antisymmetric with respect to the y; axis and this together
with the periodicity of the displacement tield requires

uy(y, =0)=uy(y; =5b) =0

The hexagonal unit cell can also be reduced to a quarter of its initial size by using the sume symmetry
arguments as for the square array. The upper right quarter, Fig. 2b, has an additional inversion symmetry around
the point (y, = \/3/2 b, ¥y = /2 b) when the periodic displacement field is fixed at this point and this makes it
possible to reduce the problem to an eighth of its original size. The inversion symmetry along the line y, = \/3/2 b
is given by the following conditions :

12b+e) = —u(y, = /3/2b,ys = 1/2b~—e)
2b+e) =Ty, = /32b. vy = 1/2b—e¢)

uly, = \/5/2 by,
T(x = /32b.y:

where

0<e<b/d
The derivations of the remaining boundary conditions are similar to the derivations for the square array and
in addition to the inversion symmetry are the following boundary conditions imposed for the different loadings :

{ay,) #£0:

u,(y, =0) = constant  so J- -OT, dr=0
up(yr=0) = —uy(y; = b) so f T dr—f  T2dr =0,
e -
(o) #0:
u(yi=0) =0,  uy(y;=0)= —uy(y; = /3/26) = constant so '[_o r,dr—J T2dl =0

£yy = constant so f 7,d =0.
¥y=0
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(g..) #0:
u (v, =0) = constant  so J 7,dI = 0. u v, =0 =u.ly,=5h =0,
l‘.-i)
£,y = constant  s0 J T.dlr =0.

-

o> #0:
Uy, =0 =u (v, =0)=u(y,=h =0

o) #0:

udy, =0)=0.
(g:0#0:

Uy, =0)=u(y.=h =0

APPENDIX B

The following stress invariants {¢/. Green and Adkins (1960)) are derived from a polynomial basis and the
symmetry relation g, = g, of the stress tensor have been used. The invariants are not unique but irreducible.

Square array:
G+, Ga. Giy 0,0, G405, 0,06, 0,0, +0,.0(,. 6.0},
Hexagonal array :
T+ 0., Oy (’Tll‘”::)"'*“‘“f:- '7'|‘|*'7::|'
a, (a6l +9al,~ 120}, +60,,0,,), a0l +a,0{ ~20,0,4;,
(0}, =303, +da],+ 200,00} =i, +3a,,0,.)(ai, +a3,) ~8a,,0,.0,,0,,,
”u”fl*‘-‘”n”g\+2”::”:|+(’”.‘.‘”i‘|”§\"x"’x:”l‘lﬂ_'\- “||(”i‘l'“3(f§|)"<

Transversely isotropic:

N R )
O +6: 0y (0, —ay,) +40i, aii+ar. ol



